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Abstract 

Considerations about the motion of the Courant and Snyder 

invariant curve/l/ are presented, which lead to an essential and 

practical procedure for estimating the adiabaticity of a linear 

harmonic oscillator. As a cosequence, an adiabatic ratio which is 

a measure of the adiabaticity is obtained for an example, by using 

a normalized time which is related to the oscillation period in 

the initial state. 
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1. Introduction 

We shall consider a time-dependent harmonic oscillator 

described by the Hamiltonian 

H(xeP; t1 = +[ p” + a(t)x’], (l-1) 

where a(t) is the time-varying parameter. It is well known that 

for sufficiently slow change in the parameter the action variable 

of system (l-l) is an approximate constant, which we desinate as 

an "adiabatic constant". The proof for adiabatic invariance of 

the "action integral" has been given in many places in the 

literature/2/. Unfortunately, the adiabatic theorem does not tell 

quantitatively how slow the change in the parameter must be for 

the adiabatic theorem to hold. 

Practically, we would expect to calculate the increase in the 

action integral when the change in the Hamiltonian is nearly 

adiabatic and even abrupt. Approximate methods to calculate the 

increase have been presented by several authors/2-6/. However, 

they have limits on their application and the calculations are 

intricate. 

We point out that the system (l-1) has an exact dynamical 

invariant independent of the change in the parameter, which is 

designated as the "Courant and Snyder invariant" 

Ih,p ;t> = + 1 x= + r; e’rt,x - pwpy } (l-2) 
/ 

where P (t) satisfies the auxiliary differential equation 
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i-f+ -$1;’ + hy?’ = 1 . (l-3) 

When x(t) is constant, the invariant I is exactly identical with 

the action variable of the system (l-l) if we choose the initial 

condition 

p(-oa) = I/JTc , p(--60~ = 0. 

For a time-varying function a(t) I from (l-2), we know that a 

sequence of infinite phase points which have a certain constant 

value of I at an arbitrary time behaves as a deformable moving 

ellipse in the phase space (x,p,;t) after that time. The form of 

such a ellipse, called an "invariant curve" in the following, is 

uniquely determined by the auxiliary differential equation (l-3) 

alone. 

We will now consider the case when the parameter /z changes 

from a constant value a, to another constant value xzin a 

finite period. It is noted that such cases often appear in real 

situations. That is 

1 
& n(t) c c k-0 ) L tst, 
a1 ( i Ita) =o ) j-or t 1 q’* (1-5) 



i-e-6 -+ p’ + mp’ = 1 . (l-3) 

When a(t) is constant, the invariant I is exactly identical with 

the action variable of the system (l-1) if we choose the initial 

condition 

p(-Co, = 1 /Jh , pc-6 = 0. 

For a time-varying function l(t), from (l-2), we know that a 

sequence of infinite phase points which have a certain constant 

value of I at an arbitrary time behaves as a deformable moving 

ellipse in the phase space (x,p,;t) after that time. The form of 

such a ellipse, called an "invariant curve" in the following, is 

uniquely determined by the auxiliary differential equation (l-3) 

alone. 

We will now consider the case when the parameter /I changes 

from a constant value a, to another constant value xr in a 

finite period. It is noted that such cases often appear in real 

situations. That is 

I 
& c ilW=0) 

AIt) = 
480, tst,, 

7L2 ( i 1L) =o 1 j-or t 2_ ty (1-5) 

T 
x1-q 

Fig.1 
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We consider the invariant curve described in the term 

1(X, Q : to ) = 10 to<t, , 

with a constant IO. The quantity I, is equal to the value of the 

action variable of infinite phase points which comprise the 

invariant curve, as mentioned above. So if we continue to examine 

the motion of the invariant curve at t>tz, we find the exact 

time-evolution of such a sequence of infinite points which once 

possessed the same action variable J. This fact will give us 

useful informations about a change in the action variable/7/. 

Furthermore, it may enable us to estimate the adiabaticity of the 

system (l-1). 

2. Motion of Invariant Curve and Adiabatic Ratio 

We may characterize an ellipse or an invariant curve by two 

(t) (See parameters of $ , s which are a funct 

Fig.2). 

ion of PC+-) and i 

Fig.2 
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If we choose the initial conditions g(to) =Mi,r P (to)=O, the 

solution of (l-3) is 

prt, = I /ix, , pw= 0 t, 5 t St, . (2-l) 

'Therefore, before the variation of the Hamiltonian the form of the 

above ellipse remaines unchanged and its motion is only parallel 

displacement along the axis of time. At t=tl, the ellipse begins 

to move, following the time-evolution of p(t) which is determined 

by Eq. (l-3). After the variation of the Xamiltonian,i.e.,t&t,, 
. 

the ellipse continues to move unless ( p(tz), P(ta)) is equal to 

(l/r& ,O) (See Fig.2). 

Now we write the phase space area surrounded by the invariant 

curve which remains constant in the region t, $ t<oo, in the term 

s, = zlc IO, (Z-2) 

In addition, we shall define S as the cross section of the outside 

envelope which the moving ellipse makes after t=ta (See Fig.3). 

Fig.3 

outs;de 

e""'bp 

;w’de 
edo 
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If we choose the initial conditions act,, =uF,t (t,)=O, the 

solution of (l-3) is 

(St) = I /si;, , (St) = 0 t, 5 7: St, (2-l) . 

Therefore, before the variation of the Xamiltonian the form of the 

above ellipse remaines unchanged and its motion is only ?arailel 

displacement along the axis of time. At t=t,, the elliose L 'begins 

to move, following the time-evolution Of p(t) which is determined 

by Eq. (l-3). After the variation of the Hamiltonian,i.e.,tkt,, 
. 

the ellipse continues to move unless ( p(t,), p(ta)) is equal ::3 

(l/& ,O) (See Fig.2). 

Now we write the phase space area surrounded by the invariant 

curve which remains constant in the region t, $ t<M, in the term 

5, = zn I,* (2-2) 

In addition, we shall define S as the cross section of the outside 

envelope which the moving ellipse makes after t=t, (See Fig.3). 

Fig.3 
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It is noted that the phase area between the outside and inside 

envelopes is the area effectively occupied by the phase points 

which have the same action variable J at t&t,. From Fig.3, the 

cross section S is described in the form 

s = K Max $W Max ~lt) t 5L . 

Then it is trivial to write g(t), s(t) in the terms of 

p(t) I E;(t) 

kit) = JzI,qG, (2-J) 

J w = JZI, c 1 + (w/4 J/p(t) (2-S) 
. 

Further we shall set 

r(t) = [ I + (jtt;/4~/pw~ 

Here we define the adiabatic ratio r in the term 

s P =- 
$a 

*,. [ Max (31” Mar I%\]” 
. 

(2-6) 

(2-T) 

The soution of (l-3) with the constant A= Alis know: 

PctI =dm2 + Acosb&Ct--t&l]+ ssiu[zJii,lt-ta] (2-8) 

r;l1t) = 

where A and B satisfy the boundary condition 

fIGi:, .-,,;I, (Z-9) 

(2-10) 

(2-11) 

From (2-10) and (2-ll), A and B are written in the terms 
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A =- & [ &>/4a, + V& - $tiJ I 

B = r;m/ 4-z . 

Further we know the point 

the auxiliary phase space 

(p- ~x&$~)z 

A’+ B2 

from (2-E) and (2-9). 

(2-12) 

(2-13) 

( P(t), p(t)) traverses an ellipse in 

CfLEj' d escribed in the form 

-1 
+ 1 

4&(ASt6J) = j 
(2-14) 

Therefore it is trivial to obtain the 

maximum values of p(t) and nt). We write these values in the 

terms 

Mar tilt) = 

So that the adiabatic ratio becomes 

(2-15) 

(2-16) 

;li 

r = ~(~~*~J~/~~-~~~\~ (2-17) 

We note that Eq.(2-17) represents geometrically the relative 

extent on the p axis of the auxiliary ellipse (2-14). If we know 

the values of p(t),i (t) at t=t2 when the variation of the 

Bamiltonian is completed, we can evaluate exactly the adiabatic 

ratio r by Eq.(2-17). Therefore, it is necessary only to solve 

the auxiliary equation (l-3) with the boundary condition 

(l/ix, ,O). 



3. Example and Discussion 

As a example, we shall consider the cosine-like change of the 

coefficient a.(t) 

71(t) = + I: it,+ a, - lit,-x,)-s ~Lt-w]t,~t$t, (3-l) 
, 

where T(=tS-t,) is the variation time. 

Introducing a parameter e 

2-2 = il, c I + E), 

and substituting (3-2) into (3-l), we have 

a(t) = a, 
[ 

I f 4 - 4 cos +-t,-) 
I . 

PUK theKmOKe, if time-scale change 

t' = +ct - w, 

is made, we have the equation of motion 

d'x 
dt' 

+ LT' 
7 'It [ 

E I+7 - $ cost' T = 0 1 . 

(X-2) 

(3-3) 

(3-4) 

(3-5) 

Then, introducing a ChaKaCteKiStiC time T, 

1, = (x-6) I 

which COKKeSpOndS t0 the oscillation period at tst,, and a 

parameter p 

T = PT, , (3-7) 

we obtain the normalized equation of motion for the system (l-l) 
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(3-8) 

FOK simplicity, we shall consider the case of E =l. The 

auxiliary differential equation fOK c3 can be described in the 

form 

&p'p' ' 
--TV + zpL( 3 - rost')p= 1 (&)j3-9) 

which has the boundary condition 

P (01 = l/J, , ~Lo~=o. (3-10) 

Unfortunately, we do not know the explicit analytical solution of 

(3-9). HOWeVeK, it is easy to obtain its solution with a help of 

a computer. Now we particularly need the solution at t'=t; = lL 

P(XJ , (SW. (3-11) 

It is trivial to calculate the adiabatic ratio, after p(X) and 

(3(K) are obtained. Thus, the adiabatic ratio K is shown as a 

function of p (See Fig.4). 

Using the present method, the adiabatic ratio fOK an 

arbitrary time-varying function X(t) can be obtained easily. 

Further we note that it gives an answer even in the region where 

traditional approximate methods are not applicable either in 

principle or because of intricacies of calculation. 
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Appendix 

Approximate Calculation of the Adiabatic Ratio 

With the introduction of a function 

we have a nOnlineaK differential equation for P(t) equivalent to 

(l-3) /8/ 

1 
‘s; + act) p = 7. (A-2) 

Instead of solving Eq.(l-31, we shall attempt to solve 

approximately Eq.(A-2) in the region t, 5 t c, t, , which has the 

initial condition 

f%,)= (id4 , Pm = 0. 
Assumption of a nearly adiabatic system permits us to 

linearize (A-2) about the guiding center 

-l/4 
P.ct, = L hlt)y . (A-4) 

We write the linearized equation as follows 
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with the initial condition 

e(L) = 0 , Ew = 0 , 

(A-5) 

(A-6) 

where E(t) is P(t) - t(t). 

When two linearly independent solutions of the homoqenious 

equation 

. I 
6 + 4Akt) 6 = 0, (A-7) 

are known, we can easily obtain a general solution of (A-5) by the 

method of variation of parameters. Unfortunately, we in general 

don't know such linearly independent solutions. Nevertheless, it 

may be reasonable to take an approximate solution obtained by the 

WKBJ method as particular solutions of (A-7), to the present 

approximation. Setting 

4hh) = 34' &I, (A-8) 

where k is an asymptotic parameter, we have two approximate 

solutions to the order (l/k) 

E+ = f -’ ex p ( ?r lnz) (A-9 1 
? 

with (A-10) 

Using (A-9), we write the approximate general solution in the form 

G(t) = C+E+ +c-c- + 5 E+P,dt-? 
I 

E- p. dt (A-11) 
t 
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where C+,C- are arbitrary coefficients and a is -2ik. Thus, the 

solution satisfying the initial condition (A-6) can be described 

as follows 

E+ \;,cw ‘p, dt’ 
. 

Repeated integration by parts yields 

e(t,j = .!-{ - ,,,I;; i, id+ Wt~~(t”: I- kdt’j 

.4(L) = & { - &,{; i+ k. dt’-t i,ct;i~ e- i: &’ }: 

Finally, using (A-13),(A-14), we can obtain 

p (tr) = [ ahi’/+- CWl, + E.I- 1: 

pet;, = 21 * )L- &b>I+ + &+I-] 
, 

where 

(A-12) 

(A-13) 

(A-14) 

(A-15) 

(A-16) 

(A-17) 

Substituting these results into (2-12),(2-13), we have a formal 

expression for the maximum change in the adiabatic invariant for 

the system (l-l). 

It may be difficult to evaluate asymptotically the integral 

12 by the so-called saddle point method/6/, since the range of 

integration is not over infinite but finite. Therefore we will 

not examine this problem extensively. 
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